## Algebra 2

## 2-02 Graph Quadratic Functions in General and Intercept Form (2.2)

Intercept form

- y = a(x p)(x q)where p and q are the \_\_\_\_\_.
- Axis of symmetry is \_\_\_\_\_\_ between the *x*-intercepts.

$$x = \frac{p+q}{2}$$

• \_\_\_\_\_

$$\left(\frac{p+q}{2}, f\left(\frac{p+q}{2}\right)\right)$$



**General Form** 

- The \_\_\_\_\_ of symmetry is

$$x = -\frac{b}{2a}$$

• \_\_\_\_\_

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

**Graph a Quadratic Function** 

1. Find the \_\_\_\_\_ of symmetry and \_\_\_\_\_.

2. Make a \_\_\_\_\_ using points on either side of the axis of symmetry.

3. \_\_\_\_\_ the points from the table.

4. \_\_\_\_\_ the parabola through the points.

Graph y = -2(x + 2)(x - 3)



Graph  $y = x^2 - 2x - 3$ 



- 1. Find the \_\_\_\_\_\_. These are *p* and *q*.
- 2. Find \_\_\_\_\_\_ other point that the graph passes through. This is \_\_\_\_\_\_.
- 3. Substitute the \_\_\_\_\_ for *p* and *q* in intercept form y = a(x p)(x q).
- 4. Substitute the point for \_\_\_\_\_\_.
- 5. Solve for \_\_\_\_\_.
- 6. Write the \_\_\_\_\_\_ by substituting *p*, *q*, and *a* into intercept form.

Write the quadratic function whose x-intercepts are -3 and 7 and passes through (0, 21).





59 #17, 19, 21, 23, 29, 45, 47, 49, 50, 65, and 76 #7, 9, 11, 15, 17, and Mixed Review = 20