Algebra 2

2-02 Graph Quadratic Functions in General and Intercept Form (2.2)

Intercept form

- $y=a(x-p)(x-q)$
where p and q are the \qquad -.
- Axis of symmetry is \qquad between the x-intercepts.

$$
x=\frac{p+q}{2}
$$

- \qquad

$$
\left(\frac{p+q}{2}, f\left(\frac{p+q}{2}\right)\right)
$$

General Form

- $y=a x^{2}+b x+c$

- The \qquad of symmetry is

$$
x=-\frac{b}{2 a}
$$

-

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

Graph a Quadratic Function

1. Find the \qquad of symmetry and \qquad .
2. Make a \qquad using points on either side of the axis of symmetry.
3. \qquad the points from the table.
4. ___ the parabola through the points.

Graph $y=-2(x+2)(x-3)$

Graph $y=x^{2}-2 x-3$

1. Find the \qquad . These are p and q.
2. Find \qquad other point that the graph passes through. This is \qquad
3. Substitute the \qquad for p and q in intercept form $y=a(x-p)(x-q)$.
4. Substitute the point for \qquad -.
5. Solve for \qquad .
6. Write the \qquad by substituting p, q, and a into intercept form.
Write the quadratic function whose x-intercepts are -3 and 7 and passes through (0,21).

Write the quadratic function given in the graph.

